Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Nature ; 625(7995): 572-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172635

RESUMO

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
2.
PLoS One ; 17(8): e0272015, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044476

RESUMO

Phylogenetic analysis, homology modelling and biochemical methods have been employed to characterize a phytase from a Gram-negative soil bacterium. Acinetobacter sp. AC1-2 phytase belongs to clade 2 of the histidine (acid) phytases, to the Multiple Inositol Polyphosphate Phosphatase (MINPP) subclass. The enzyme was extraordinarily stable in solution both at room temperature and 4°C, retaining near 100% activity over 755 days. It showed a broad pH activity profile from 2-8.5 with maxima at 3, 4.5-5 and 6. The enzyme showed Michaelis-Menten kinetics and substrate inhibition (Vmax, Km, and Ki, 228 U/mg, 0.65 mM and 2.23 mM, respectively). Homology modelling using the crystal structure of a homologous MINPP from a human gut commensal bacterium indicated the presence of a potentially stabilising polypeptide loop (a U-loop) straddling the active site. By employ of the enantiospecificity of Arabidopsis inositol tris/tetrakisphosphate kinase 1 for inositol pentakisphosphates, we show AC1-2 MINPP to possess D6-phytase activity, which allowed modelling of active site specificity pockets for InsP6 substrate. While phytase gene transcription was unaltered in rich media, it was repressed in minimal media with phytic acid and orthophosphate as phosphate sources. The results of this study reveal AC1-2 MINPP to possess desirable attributes relevant to biotechnological use.


Assuntos
6-Fitase , Acinetobacter , Monoéster Fosfórico Hidrolases , 6-Fitase/química , 6-Fitase/metabolismo , Acinetobacter/química , Acinetobacter/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Concentração de Íons de Hidrogênio , Fosfatos , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo , Filogenia , Ácido Fítico , Microbiologia do Solo , Especificidade por Substrato
3.
Chem Commun (Camb) ; 56(81): 12222-12225, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32926028

RESUMO

Genome mining for VibH homologs reveals several species of Acinetobacter with a gene cluster that putatively encodes the biosynthesis of catechol siderophores with an amine core. A. bouvetii DSM 14964 produces three novel biscatechol siderophores: propanochelin (1), butanochelin (2), and pentanochelin (3). This strain has a relaxed specificity for the amine substrate, allowing for the biosynthesis of a variety of non-natural siderophore analogs by precursor directed biosynthesis. Of potential synthetic utility, A. bouvetii DSM 14964 condenses 2,3-dihydroxybenzoic acid (2,3-DHB) to allylamine and propargylamine, producing catecholic compounds which bind iron(iii) and may be further modified via thiol-ene or azide-alkyne click chemistry.


Assuntos
Acinetobacter/química , Catecóis/metabolismo , Acinetobacter/metabolismo , Catecóis/química , Estrutura Molecular , Estereoisomerismo
4.
J Trace Elem Med Biol ; 62: 126630, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32738757

RESUMO

BACKGROUND: Biogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa). METHODS: bAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs). RESULTS: Both the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 µg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 µg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis. CONCLUSION: Overall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.


Assuntos
Acinetobacter/química , Antineoplásicos/química , Curcuma/química , Nanopartículas Metálicas/química , Prata/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Citometria de Fluxo , Células HeLa , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
5.
Opt Express ; 28(13): 19740-19749, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32672244

RESUMO

Environmental monitoring and potable water control are key applications where optical fiber sensing solutions can outperform other technologies. In this work, we report a highly sensitive plasmonic fiber-optic probe that has been developed to determine the concentration of cadmium ions (Cd2+) in solution. This original sensor was fabricated by immobilizing the Acinetobacter sp. around gold-coated tilted fiber Bragg gratings (TFBGs). To this aim, the immobilization conditions of bacteria on the gold-coated optical fiber surface were first experimentally determined. Then, the coated sensors were tested in vitro. The relative intensity of the sensor response experienced a change of 1.1 dB for a Cd2+ concentration increase from 0.1 to 1000 ppb. According to our test procedure, we estimate the experimental limit of detection to be close to 1 ppb. Cadmium ions strongly bind to the sensing surface, so the sensor exhibits a much higher sensitivity to Cd2+ than to other heavy metal ions such as Pb2+, Zn2+ and CrO42- found in contaminated water, which ensures a good selectivity.


Assuntos
Acinetobacter/química , Cádmio/análise , Cupriavidus/química , Tecnologia de Fibra Óptica/instrumentação , Pseudomonas/química , Técnicas Biossensoriais/métodos , Desenho de Equipamento , Tecnologia de Fibra Óptica/métodos , Íons , Ressonância de Plasmônio de Superfície/métodos
6.
J Am Chem Soc ; 141(48): 19058-19066, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31697479

RESUMO

The bacterial cell surface structure has important roles for various cellular functions. However, research on reconstituting bacterial cell surface structures is limited. This study aimed to bottom-up create a cell-sized liposome covered with AtaA, the adhesive bacterionanofiber protein localized on the cell surface of Acinetobacter sp. Tol 5, without the use of the protein secretion and assembly machineries. Liposomes containing a benzylguanine derivative-modified phospholipid were decorated with a truncated AtaA protein fused to a SNAP-tag expressed in a soluble fraction in Escherichia coli. The obtained liposome showed a similar surface structure and function to that of native Tol 5 cells and adhered to both hydrophobic and hydrophilic solid surfaces. Furthermore, this artificial cell was able to drive an enzymatic reaction in the adhesive state. The developed artificial cellular system will allow for analysis of not only AtaA, but also other cell surface proteins under a cell-mimicking environment. In addition, AtaA-decorated artificial cells may inspire the development of biotechnological applications that require immobilization of cells onto a variety of solid surfaces, in particular, in environments where the use of genetically modified organisms is prohibited.


Assuntos
Acinetobacter/química , Adesivos/química , Células Artificiais/química , Proteínas de Bactérias/química , Nanofibras/química , Células Artificiais/citologia , Biocatálise , Guanina/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/química , Fosfolipídeos/química
7.
Environ Sci Pollut Res Int ; 26(31): 32065-32079, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493076

RESUMO

The potential for coupling bioaugmentation with phytoremediation to simultaneously treat and utilize treated palm oil mill effluent (TPOME) in animal feed production was determined from a reduction in phenolic compounds and color in soil leachates, as well as from an increased yield of pasture grass. Two phenol-degrading bacteria-Methylobacterium sp. NP3 and Acinetobacter sp. PK1-were inoculated into the Brachiaria humidicola rhizosphere before the application of TPOME. A pot study showed that the soil with both grass and inoculated bacteria had the highest dephenolization and decolorization efficiencies, with a maximum capability of removing 70% from 587 mg total phenolic compounds added and 73% from 4438 color units during ten TPOME application cycles. The results corresponded to increases in the number of phenol-degrading bacteria and the grass yield. In a field study, this treatment was able to remove 46% from 21,453 mg total phenolic compounds added, with a maximum color removal efficiency of 52% from 5105 color units, while the uninoculated plots removed about 24-39% and 29-46% of phenolic compounds and color, respectively. The lower treatment performance was probably due to the increased TPOME concentrations. Based on the amounts of phenolic compounds, protein, and crude fiber in the grass biomass, the inoculated TPOME-treated grass had a satisfactory nutritional quality and digestibility for use as animal feed.


Assuntos
Acinetobacter/metabolismo , Óleo de Palmeira/metabolismo , Fenóis/química , Óleos de Plantas/metabolismo , Poaceae/metabolismo , Solo/química , Acinetobacter/química , Biodegradação Ambiental , Biomassa , Cor , Fenóis/metabolismo , Rizosfera
8.
N Biotechnol ; 53: 81-89, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31302257

RESUMO

Crude glycerol is an excellent carbon source for bacterial production systems. Bacterial fermentation often generates by-products that can offer an additional carbon pool to improve the product profile for optimal valorization. In this study, the properties of two phylogenetically distinct bacteria, Acinetobacter baylyi ADP1 and Clostridium butyricum, were coupled in a one-pot batch process to co-produce 1,3 propanediol (PDO) and long-chain alkyl esters (wax esters, WEs) from crude glycerol. In the process, A. baylyi deoxidized the growth medium allowing glycerol fermentation and PDO production by C. butyricum. Reaeration of the co-cultivations enabled A. baylyi to metabolize the fermentation by-products, acetate and butyrate, and synthesize intracellular WEs. To improve PDO production and A. baylyi growth, carbon and macronutrients in the growth medium were screened and optimized using Plackett-Burman and Box-Behnken models. The validation experiment revealed a good correlation between the observed and predicted values. The salting-out method recovered 89.5% PDO from the fermentation broth and in vacuo extraction resulted in a PDO content of 5.3 g L-1. Nuclear magnetic resonance revealed a WE content and yield of 34.4 ±â€¯1.4 mg L-1 and 34.2 ±â€¯3.2 mg WE g-1 dry cell weight, respectively. A molar yield of 0.65 mol PDO mol-1 and 0.62 µmol WE mol-1 crude glycerol was achieved with the synthetic consortium. This work emphasizes the strength of response surface methodology in improving production processes from the mutualistic association of divergent bacterial species in consortium. The co-production of PDO and WEs from crude glycerol is demonstrated for the first time in this study.


Assuntos
Acinetobacter/química , Clostridium butyricum/química , Ésteres/metabolismo , Glicerol/química , Propilenoglicóis/metabolismo , Acinetobacter/metabolismo , Clostridium butyricum/metabolismo , Ésteres/química , Fermentação , Glicerol/metabolismo , Propilenoglicóis/química
9.
Mem Inst Oswaldo Cruz ; 114: e190020, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166421

RESUMO

BACKGROUND: The multidrug resistance (MDR) phenotype is frequently observed in Acinetobacter baumannii, the most clinically relevant pathogenic species of its genus; recently, other species belonging to the A. calcoaceticus-A. baumannii complex have emerged as important MDR nosocomial pathogens. OBJECTIVES: The present study aimed to verify the occurrence of metallo-ß-lactamase genes among distinct Acinetobacter species in a hospital located in the Brazilian Amazon Region. METHODS: Antimicrobial susceptibility profiles were determined by broth microdilution. The genetic relationships among these isolates were assessed by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Pyrosequencing reads of plasmids carrying the bla NDM-1 gene were generated using the Ion Torrent™ platform sequencing. FINDINGS: A total of six isolates carried bla NDM-1: A. baumannii (n = 2), A. nosocomialis (n = 3), and A. pittii (n = 1); three carried bla IMP-1: A. baumannii, A. nosocomialis, and A. bereziniae. Resistance to colistin was observed for an NDM-1-producing A. nosocomialis isolate. Diverse PFGE patterns and sequence types were found among A. nosocomialis and A. baumannii isolates. The bla NDM-1 sequence was inserted in a Tn125 transposon, while the bla IMP-1 was found as a gene cassette of the class 1 integron In86. MAIN CONCLUSIONS: To the best of our knowledge, this is the first report describing the dissemination of bla NDM-1 among distinct Acinetobacter species recovered from the same hospital in South America.


Assuntos
Acinetobacter/química , Acinetobacter/isolamento & purificação , beta-Lactamases/genética , beta-Lactamases/isolamento & purificação , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Brasil , Carbapenêmicos/farmacologia , DNA Bacteriano , Farmacorresistência Bacteriana , Eletroforese em Gel de Campo Pulsado , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Unidades de Terapia Intensiva , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 103(15): 6217-6229, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31144015

RESUMO

Acinetobacter baylyi ADP1 is a microorganism with the potential to produce storage lipids. Here, a systematic study was carried out to evaluate growth performance and accumulation of wax esters and triacylglycerols using glycerol, xylose, glucose, acetate, ethanol, and pyruvate as carbon sources. High specific growth rates (µ) were found in gluconeogenic carbon sources (ethanol, acetate, and pyruvate: 0.94 ± 0.18, 0.93 ± 0.06, and 0.61 ± 0.01 h-1, respectively), and low in glucose (0.25 ± 0.01 h-1). Interestingly, these µ values were sustained in a broad range of concentrations of glucose (0.5-50 g L-1), pyruvate (3-10 g L-1), and acetate (0.3-2 g L-1), suggesting a high tolerance to glucose and pyruvate. It was observed that ADP1 is not able to use glycerol or xylose as unique carbon sources. On the other hand, ADP1 showed sensitivity to osmotic upshifts, noted by the lysis at the beginning of cultivations on different carbon sources. However, ADP1 is adapted to relatively high substrate concentrations as indicated by the minimal inhibitory concentrations (MICs) determined at 24 h of cultivations: 350, 50, 80, and 15 g L-1 for glucose, ethanol, pyruvate, and acetate, respectively. Remarkably, ADP1 co-utilized glucose, acetate, ethanol, and pyruvate. Finally, the accumulation of storage lipids, wax esters (WEs), and triacylglycerols (TAGs) showed to be substrate dependent. Under nitrogen-limiting conditions, the TAGs:WEs (mol:mol) accumulation ratios were 1:4.9 in pyruvate and 1:1.6 in glucose, the WEs were mainly accumulated in acetate. In ethanol, no accumulation of lipids was detected.


Assuntos
Acinetobacter/crescimento & desenvolvimento , Acinetobacter/metabolismo , Carbono/metabolismo , Meios de Cultura/química , Metabolismo dos Lipídeos , Lipídeos/análise , Acinetobacter/química
11.
Metabolomics ; 15(3): 45, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30874951

RESUMO

INTRODUCTION: Metabolite identification remains a major bottleneck in the understanding of metabolism. Many metabolomics studies end up with unknown compounds, leaving a landscape of metabolites and metabolic pathways to be unraveled. Therefore, identifying novel compounds within a metabolome is an entry point into the 'dark side' of metabolism. OBJECTIVES: This work aimed at elucidating the structure of a novel metabolite that was first detected in the soil bacterium Acinetobacter baylyi ADP1 (ADP1). METHODS: We used high resolution multi-stage tandem mass spectrometry for characterizing the metabolite within the metabolome. We purified the molecule for 1D- and 2D-NMR (1H, 13C, 1H-1H-COSY, 1H-13C-HSQC, 1H-13C-HMBC and 1H-15N-HMBC) analyses. Synthetic standards were chemically prepared from MS and NMR data interpretation. RESULTS: We determined the de novo structure of a previously unreported metabolite: 3-((3-aminopropyl)amino)-4-hydroxybenzoic acid. The proposed structure was validated by comparison to a synthetic standard. With a concentration in the millimolar range, this compound appears as a major metabolite in ADP1, which we anticipate to participate to an unsuspected metabolic pathway. This novel metabolite was also detected in another γ-proteobacterium. CONCLUSION: Structure elucidation of this abundant and novel metabolite in ADP1 urges to decipher its biosynthetic pathway and cellular function.


Assuntos
Acinetobacter/metabolismo , Parabenos/química , Acinetobacter/química , Espectroscopia de Ressonância Magnética/métodos , Metaboloma , Metabolômica/métodos , Parabenos/metabolismo , Espectrometria de Massas em Tandem/métodos
12.
Mar Drugs ; 17(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717135

RESUMO

Two new alkaloids indolepyrazines A (1) and B (2) were isolated from the marine-derived Acinetobacter sp. ZZ1275. Their structures were elucidated through extensive nuclear magnetic resonance (NMR) spectroscopic analyses, high resolution electrospray ionization mass spectroscopy (HRESIMS) data, and electronic circular dichroism (ECD) calculation. Indolepyrazine A represents the first example of alkaloids with an indole-pyrazine-oxindole skeleton. Both 1 and 2 showed antimicrobial activities against methicillin-resistant Staphylococcus aureus, Escherichia coli, and Candida albicans with minimum inhibitory concentration (MIC) values of 12 µg/mL, 8⁻10 µg/mL, and 12⁻14 µg/mL, respectively.


Assuntos
Acinetobacter/química , Antibacterianos/química , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Candida albicans/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Alcaloides Indólicos/isolamento & purificação , Imageamento por Ressonância Magnética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pirazinas/isolamento & purificação
13.
Syst Appl Microbiol ; 42(3): 319-325, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30808586

RESUMO

We studied the taxonomic position of six phenetically related strains of the genus Acinetobacter, which were recovered from hospital sewage in China and showed different patterns of resistance to clinically important antibiotics. Whole-genome sequencing of these strains and genus-wide phylogeny reconstruction based on a set of 107 Acinetobacter core genes indicated that they formed a separate and internally cohesive clade within the genus. The average nucleotide identity based on BLAST and digital DNA-DNA hybridization values between the six new genomes were 97.25-98.67% and 79.2-89.3%, respectively, whereas those between them and the genomes of the known species were ≤78.57% and ≤28.5%, respectively. The distinctness of the strains at the species level was also supported by the results of the cluster analysis of the whole-cell protein fingerprints generated by MALDI-TOF MS. Moreover, the strains displayed a catabolically unique profile and could be differentiated from the phylogenetically closest species at least by their inability to grow on d,l-lactate. A total of 18 different genes were found in the six genome sequences which encode resistance to seven classes of antimicrobial agents, including clinically important carbapenems, oxyimino-cephalosporins, or aminoglycosides. These genes occurred in five different combinations, with three to 10 different genes per strain. We conclude that the six strains represent a novel Acinetobacter species, for which we propose the name Acinetobacter cumulans sp. nov. to reflect its ability to acquire and cumulate diverse resistance determinants. The type strain is WCHAc060092T (ANC 5797T=CCTCC AB 2018119T=GDMCC 1.1380T=KCTC 62576T).


Assuntos
Acinetobacter/classificação , Acinetobacter/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Genes Bacterianos , Hospitais , Esgotos/microbiologia , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , China , DNA Bacteriano/genética , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Mapeamento de Peptídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Curr Microbiol ; 75(11): 1434-1440, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30019131

RESUMO

Bacterial contact-dependent growth inhibition (CDI) systems are two-partner secretion systems in which toxic CdiA proteins are exported on the outer membrane by cognate transporter CdiB proteins. Upon binding to specific receptors, the C-terminal toxic (CT) domain, detached from CdiA, is delivered to neighbouring cells. Contacts inhibit the growth of not-self-bacteria, lacking immunity proteins co-expressed with CdiA, but promote cooperative behaviours in "self" bacteria, favouring the formation of biofilm structures. The Acinetobacter baylyi ADP1 strain features two CdiA, which differ significantly in size and have different CT domains. Homologous proteins sharing the same CT domains have been identified in A. baumannii. The growth inhibition property of the two A. baylyi CdiA proteins was supported by competition assays between wild-type cells and mutants lacking immunity genes. However, neither protein plays a role in biofilm formation or adherence to epithelial cells, as proved by assays carried out with knockout mutants. Inhibitory and stimulatory properties may be similarly uncoupled in A. baumannii proteins.


Assuntos
Acinetobacter/fisiologia , Proteínas de Bactérias/metabolismo , Inibição de Contato , Proteínas de Membrana/metabolismo , Acinetobacter/química , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Aderência Bacteriana , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biofilmes , Células Epiteliais/microbiologia , Humanos , Proteínas de Membrana/genética , Domínios Proteicos
15.
Sci Rep ; 8(1): 7470, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748546

RESUMO

Bacteria inhabit a vast range of biological niches and have evolved diverse mechanisms to cope with environmental stressors. The genus Acinetobacter comprises a complex group of Gram-negative bacteria. Some of these bacteria such as A. baumannii are nosocomial pathogens. They are often resistant to multiple antibiotics and are associated with epidemic outbreaks. A. radioresistens is generally considered to be a commensal bacterium on human skin or an opportunistic pathogen. Interestingly, this species has exceptional resistance to a range of environmental challenges which contributes to its persistence in clinical environment and on human skin. We studied changes in its lipid composition induced by the onset of stationary phase. This strain produced triglycerides (TG) as well as four common phospholipids: phosphatidylethanolamine (PE), phosphatidylglycerol (PG), cardiolipin (CL) and lysocardiolipin (LCL). It also produced small amounts of acyl-phosphatidylglycerol (APG). As the bacterial growth entered the stationary phase, the lipidome switched from one dominated by PE and PG to another dominated by CL and LCL. Surprisingly, bacteria in the stationary phase produced N-acyl-phosphatidylethanolamine (NAPE) and another rare lipid we tentatively name as 1-phosphatidyl-2-acyl-glycero-3-phosphoethanolamine (PAGPE) based on tandem mass spectrometry. It is possible these tri-acylated lipids play an important role in coping with nutrient depletion.


Assuntos
Acinetobacter/crescimento & desenvolvimento , Glicerofosfolipídeos/metabolismo , Acinetobacter/química , Acinetobacter/metabolismo , Infecções por Acinetobacter/microbiologia , Acilação , Glicerofosfolipídeos/análise , Humanos , Espectrometria de Massas em Tandem
16.
J Am Soc Mass Spectrom ; 29(7): 1546-1553, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29633221

RESUMO

Currently, the capability of identification for Acinetobacter species using MALDI-TOF MS still remains unclear in clinical laboratories due to certain elusory phenomena. Thus, we conducted this research to evaluate this technique and reveal the causes of misidentification. Briefly, a total of 788 Acinetobacter strains were collected and confirmed at the species level by 16S rDNA and rpoB sequencing, and subsequently compared to the identification by MALDI-TOF MS using direct smear and bacterial extraction pretreatments. Cluster analysis was performed based on the mass spectra and 16S rDNA to reflect the diversity among different species. Eventually, 19 Acinetobacter species were confirmed, including 6 species unavailable in Biotyper 3.0 database. Another novel species was observed, temporarily named A. corallinus. The accuracy of identification for Acinetobacter species using MALDI-TOF MS was 97.08% (765/788), regardless of which pretreatment was applied. The misidentification only occurred on 3 A. parvus strains and 20 strains of species unavailable in the database. The proportions of strains with identification score ≥ 2.000 using direct smear and bacterial extraction pretreatments were 86.04% (678/788) and 95.43% (752/788), χ2 = 41.336, P < 0.001. The species similar in 16 rDNA were discriminative from the mass spectra, such as A. baumannii & A. junii, A. pittii & A. calcoaceticus, and A. nosocomialis & A. seifertii. Therefore, using MALDI-TOF MS to identify Acinetobacter strains isolated from clinical samples was deemed reliable. Misidentification occurred occasionally due to the insufficiency of the database rather than sample extraction failure. We suggest gene sequencing should be performed when the identification score is under 2.000 even when using bacterial extraction pretreatment. Graphical Abstract ᅟ.


Assuntos
Acinetobacter/química , Acinetobacter/classificação , Técnicas de Tipagem Bacteriana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Infecções por Acinetobacter/microbiologia , Análise por Conglomerados , Bases de Dados Factuais , Humanos
17.
Proc Natl Acad Sci U S A ; 115(12): 3150-3155, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507210

RESUMO

Penicillin-binding proteins (PBPs) are synthases required to build the essential peptidoglycan (PG) cell wall surrounding most bacterial cells. The mechanisms regulating the activity of these enzymes to control PG synthesis remain surprisingly poorly defined given their status as key antibiotic targets. Several years ago, the outer-membrane lipoprotein EcLpoB was identified as a critical activator of Escherichia coli PBP1b (EcPBP1b), one of the major PG synthases of this organism. Activation of EcPBP1b is mediated through the association of EcLpoB with a regulatory domain on EcPBP1b called UB2H. Notably, Pseudomonas aeruginosa also encodes PBP1b (PaPBP1b), which possesses a UB2H domain, but this bacterium lacks an identifiable LpoB homolog. We therefore searched for potential PaPBP1b activators and identified a lipoprotein unrelated to LpoB that is required for the in vivo activity of PaPBP1b. We named this protein LpoP and found that it interacts directly with PaPBP1b in vitro and is conserved in many Gram-negative species. Importantly, we also demonstrated that PaLpoP-PaPBP1b as well as an equivalent protein pair from Acinetobacter baylyi can fully substitute for EcLpoB-EcPBP1b in E. coli for PG synthesis. Furthermore, we show that amino acid changes in PaPBP1b that bypass the PaLpoP requirement map to similar locations in the protein as changes promoting EcLpoB bypass in EcPBP1b. Overall, our results indicate that, although different Gram-negative bacteria activate their PBP1b synthases with distinct lipoproteins, they stimulate the activity of these important drug targets using a conserved mechanism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Acinetobacter/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Lipoproteínas/química , Lipoproteínas/genética , Lipoproteínas/metabolismo , Mutação , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Filogenia , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética
18.
Int J Biol Macromol ; 112: 712-719, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29425877

RESUMO

In the present study the produced biosurfactant of Acinetobacter junii B6 (recently isolated from Iranian oil excavation site) were partially purified and identified by high performance thin layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H NMR). Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) revealed that the biosurfactant was anionic in nature. The physiochemical properties of the lipopeptide biosurfactant were evaluated by determination of its critical micelle concentration (CMC) and hydrophile-lipophile balance (HLB). The produced biosurfactant decreased the surface tension of water to 36mNm-1 with the CMC of approximately 300mg/l. Furthermore, the solubility properties of the biosurfactant (dissolved in phosphate-buffer saline solution, pH7.4) were investigated by turbidity examination, dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM) inspection. It could be concluded that the biosurfactant showed the spherical-shaped vesicles at a concentration higher than its CMC and the circular dichroism (CD) spectra showed that the secondary structure of the biosurfactant vesicles is dominated by the ß sheet.


Assuntos
Acinetobacter/química , Lipopeptídeos/química , Lipopeptídeos/farmacologia , Agregados Proteicos , Tensoativos/química , Tensoativos/farmacologia , Cromatografia em Camada Delgada , Dicroísmo Circular , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Agregados Proteicos/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , Reologia , Espectrometria por Raios X , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial , Temperatura , Termogravimetria
19.
J Biomol Struct Dyn ; 36(12): 3077-3093, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28884626

RESUMO

Interests in Acinetobacter haemolyticus lipases are showing an increasing trend concomitant with growth of the enzyme industry and the widening search for novel enzymes and applications. Here, we present a structural model that reveals the key catalytic residues of lipase KV1 from A. haemolyticus. Homology modeling of the lipase structure was based on the structure of a carboxylesterase from the archaeon Archaeoglobus fulgidus as the template, which has a sequence that is 58% identical to that of lipase KV1. The lipase KV1 model is comprised of a single compact domain consisting of seven parallel and one anti-parallel ß-strand surrounded by nine α-helices. Three structurally conserved active-site residues, Ser165, Asp259, and His289, and a tunnel through which substrates access the binding site were identified. Docking of the substrates tributyrin and palmitic acid into the pH 8 modeled lipase KV1 active sites revealed an aromatic platform responsible for the substrate recognition and preference toward tributyrin. The resulting binding modes from the docking simulation correlated well with the experimentally determined hydrolysis pattern, for which pH 8 and tributyrin being the optimum pH and preferred substrate. The results reported herein provide useful insights into future structure-based tailoring of lipase KV1 to modulate its catalytic activity.


Assuntos
Acinetobacter/química , Archaeoglobus fulgidus/química , Carboxilesterase/química , Lipase/química , Acinetobacter/enzimologia , Álcalis/química , Sequência de Aminoácidos/genética , Archaeoglobus fulgidus/enzimologia , Sítios de Ligação , Carboxilesterase/genética , Domínio Catalítico/genética , Hidrólise , Lipase/genética , Simulação de Dinâmica Molecular , Conformação Proteica em Folha beta , Especificidade por Substrato
20.
Int J Nanomedicine ; 12: 6841-6855, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979122

RESUMO

The aim of this study was to synthesize selenium nanoparticles (SeNPs) using cell suspension and total cell protein of Acinetobacter sp. SW30 and optimize its synthesis by studying the influence of physiological and physicochemical parameters. Also, we aimed to compare its anticancer activity with that of chemically synthesized SeNPs in breast cancer cells. Cell suspension of Acinetobacter sp. SW30 was exposed to various physiological and physicochemical conditions in the presence of sodium selenite to study their effects on the synthesis and morphology of SeNPs. Breast cancer cells (4T1, MCF-7) and noncancer cells (NIH/3T3, HEK293) were exposed to different concentrations of SeNPs. The 18 h grown culture with 2.7×109 cfu/mL could synthesize amorphous nanospheres of size 78 nm at 1.5 mM and crystalline nanorods at above 2.0 mM Na2SeO3 concentration. Polygonal-shaped SeNPs of average size 79 nm were obtained in the supernatant of 4 mg/mL of total cell protein of Acinetobacter sp. SW30. Chemical SeNPs showed more anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30 (BSeNPs), but they were found to be toxic to noncancer cells also. However, BSeNPs were selective against breast cancer cells than chemical ones. Results suggest that BSeNPs are a good choice of selection as anticancer agents.


Assuntos
Acinetobacter/metabolismo , Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Compostos de Selênio/síntese química , Compostos de Selênio/farmacologia , Acinetobacter/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Química Verde , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Compostos de Selênio/química , Selenito de Sódio/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...